Intergenerational earnings mobility and equality of opportunity in South Africa

by

Patrizio Piraino
About the Author(s) and Acknowledgments

Patrizio Piraino is a Senior Lecturer in the School of Economics and a Research Associate of the Southern Africa Labour and Development Unit (SALDRU) at the University of Cape Town.

Correspondence to: patrizio.piraino@uct.ac.za

Recommended citation

ISBN: 978-1-920517-72-4

© Southern Africa Labour and Development Research Unit, UCT, 2014

Working Papers can be downloaded in Adobe Acrobat format from www.saldru.uct.ac.za. Printed copies of Working Papers are available for R15.00 each plus vat and postage charges.

Orders may be directed to:
The Administrative Officer, SALDRU, University of Cape Town, Private Bag, Rondebosch, 7701, Tel: (021) 650 5696, Fax: (021) 650 5697, Email: brenda.adams@uct.ac.za
Intergenerational earnings mobility and equality of opportunity in South Africa

Patrizio Piraino*

* University of Cape Town

April 2014

ABSTRACT
The paper estimates the degree of intergenerational earnings persistence in South Africa. It explores the link between this measure of social mobility and an index of inequality of opportunity. Using microdata from the National Income Dynamics Study (NIDS), the paper finds that intergenerational earnings mobility in South Africa is low. In addition, a limited set of inherited circumstances explains a significant fraction of earnings inequality among male adults. Adding South Africa to the existing international literature supports the hypothesis that low levels of intergenerational mobility and equality of opportunity are emblematic of high-inequality emerging economies.

Keywords: Intergenerational earnings mobility, inequality of opportunity

* School of Economics, University of Cape Town, Private Bag Rondebosch 7701, South Africa. E-mail: patrizio.piraino@uct.ac.za. Earlier versions of the paper were presented during the 2nd World Bank Conference on Equity (Washington DC, June 2012), the ERSA Public Economics Workshop (Polkwane, November 2012), and at seminars at Stellenbosch University and the University of Cape Town. I thank participants to these events for their feedback.
1. Introduction

A positive correlation between the income of parents and that of their adult offspring is found in almost every country for which data are available. This is true for several types of income (e.g. earnings, total market income, welfare receipts etc…) and for societies with differing political and economic institutions—see Solon (1999), Black and Devereux (2011), and Corak (2013) for comprehensive reviews. The international literature has shown that countries with a higher degree of cross-sectional inequality tend to have less economic mobility across generations. This relationship is sometimes known as the ‘Great Gatsby Curve’.\(^1\) From this perspective, South Africa represents a very interesting case to study, being characterized by high and enduring levels of income inequality (Leibbrandt et al., 2010). In addition (and perhaps surprisingly), recent empirical studies of intergenerational persistence in educational attainments found South Africa to be more mobile in comparison to countries with similarly high levels of cross-sectional inequality (Hertz et al., 2007). Although this result may be partially explained by issues of quality of education, it calls for further investigation.

A finding of high intergenerational earnings persistence is often understood as an indication of unequal opportunities in the labour market. However, as clarified by Jencks and Tach (2006), “equal opportunity does not imply eliminating all sources of economic resemblance between parents and children.” In fact, an entire literature on the direct definition and estimation of equality of opportunity has grown with little overlap with the intergenerational mobility literature (see Brunori et al. 2013, for a review). In this literature, individuals’ economic outcomes are expressed as a function of two types of individual characteristics. The first class of

\(^{1}\) This is the name Alan Krueger (chairman of the White House Council of Economic Advisers) used when describing the positive correlation between the Gini coefficient and the intergenerational earnings elasticity across countries (Krueger, 2012).
attributes includes inherited circumstances over which the individual has no control; typical examples of such circumstances are gender, race, and parental socioeconomic status. The second class of traits is referred to as efforts, and includes all factors within the individual’s control. This distinction relates to the debate around different sources of inequality and the degree to which some are more objectionable than others. From an opportunity egalitarian view, inequality in individuals’ economic success is acceptable when it is the result of a fair economic process—i.e. when inherited circumstances do not play a dominant role.

This paper provides estimates of intergenerational earnings mobility and inequality of opportunity in South Africa. Lack of suitable data constrained previous studies to focus almost exclusively on educational and/or occupational measures of social status. Retrospective parental information from a nationally representative sample of South Africans is used in the empirical analysis. The results presented below indicate that intergenerational earnings persistence in South Africa is high, and that a small number of circumstances explains a significant fraction of cross-sectional earnings inequality. The magnitudes of the summary mobility and opportunity measures are within the range of values found in other emerging economies (e.g. Brazil, Chile, and China) and higher than those estimated in most developed nations. The paper also investigates the statistical link between estimates of inequality of opportunity and intergenerational earnings persistence. Although that the two measures perform distinct descriptive functions, the paper attempts a ‘combined’ interpretation of the empirical findings by using a joint statistical framework.

The rest of the paper proceeds as follows. Section 2 reviews the relevant literatures and explains how South African data can be used to add to the international evidence. Section 3
describes the dataset, while section 4 carries out the main empirical analysis. Section 5 concludes.

2. Measuring intergenerational mobility and inequality of opportunity

2.1 The intergenerational elasticity (IGE)

The most common empirical specification of the intergenerational earnings relationship is given by the regression model

$$Y^c_i = \alpha + \beta Y^p_i + \epsilon_i$$

(1)

where Y^c_i is a measure of the long-run earnings of the offspring and Y^p_i the corresponding value for the parent (both in logarithmic form). The coefficient estimate for β, called the intergenerational elasticity (IGE), can be interpreted as a summary measure of the degree of earnings persistence across generations. By definition, the elasticity β indicates the percent difference in children’s earnings observed for a 1 percent difference across the earnings of parents. Its complement, $1 - \beta$, is a measure of intergenerational mobility.²

Estimates of the intergenerational earnings elasticity are available from a large set of countries and for different time periods. Although differences in data and empirical methodologies make direct comparisons of IGEs across countries difficult, some consistent patterns have emerged in the literature. Overall, the existing international literature suggests a negative relationship between cross-sectional inequality and intergenerational mobility (Corak, 2013). Among advanced economies, Scandinavian countries are generally found to have the

² The empirical literature on intergenerational earnings mobility has highlighted two main measurement issues. First, measurement error in single-year observations of parental earnings has been shown to bias downward the estimated IGE (Solon, 1992). Second, the age at which the earnings of both parents and offspring are measured also affects the estimated elasticity. Haider and Solon (2006) and Grawe (2006) showed that this type of life-cycle bias can be significant when individuals are observed either too early or too late in their working life.
highest degree of mobility, as measured by $IGEs$ in the order of 0.2. At the opposite end, countries like the United States and Italy display the highest persistence with estimated $IGEs$ of about 0.4-0.5 (Solon 2002, Björklund and Jäntti 2010, Corak 2013). Considerably less evidence on intergenerational earnings persistence is available from developing and transition economies. This is because longitudinal income data on successive generations are rarely available. The majority of studies on low- and middle-income countries have used alternative measures of socioeconomic status (e.g. education, occupational status), and find that social mobility is low, even when compared to the least mobile advanced countries (see the large cross-national comparison in Hertz et al. 2007).3

Although parents’ earnings are not usually reported in household surveys in developing countries, data on parental socioeconomic characteristics such as education and occupation are more common. Björklund and Jäntti (1997) introduced a two-stage empirical approach that uses information on father’s socioeconomic status to obtain predicted values of his earnings. The return to observable characteristics is estimated on a sample of ‘pseudo’ fathers from an auxiliary dataset representative of the same population. The predicted earnings are then used to estimate the standard intergenerational elasticity (Eq. 1). Since Björklund and Jäntti’s initial application, a number of studies adopted the same procedure for countries where longitudinal information on parents and offspring is not available. Dunn (2007), and Ferreira and Veloso (2006) used this empirical strategy to estimate the IGE in Brazil. Both papers find evidence of high earnings persistence, with estimates of the father-son elasticity at around 0.6. Gong et al. (2012) adopt a similar approach on Chinese data on urban residents and report a father-son IGE of 0.63. Nunez

3 For South Africa, Keswell et al. (2013) analyze the role of educational opportunity in shaping the distribution of occupations across generations.
and Miranda (2010) obtain two-sample-two-stage estimates of the intergenerational income elasticity in Chile in the range of 0.57–0.74 (depending on the specification).4

The present study follows the two-stage approach to obtain an estimate of the intergenerational earnings elasticity in South Africa. Since parents’ earnings in Eq. 1 are not observable, a prediction is obtained by an auxiliary first-stage regression:

\[Y_i^p = \lambda X_i^p + v_i^p \]

(2)

The first-stage model is estimated on a different (and older) sample, which is representative of the same population. That is, the Mincer-type Eq. 2 is estimated on a sample of ‘pseudo’ parents with earnings and socio-demographic information. The coefficients \(\lambda \) can be used to predict the earnings of the actual parents using the characteristics reported by their children, which are the same as those included in vector \(X_i^p \). The final intergenerational regression is then

\[Y_i^c = a + \beta \hat{Y}_i^p + e_i \]

(3)

where \(\beta \) is the parameter of interest. The estimation of Eqs. 2 and 3 is referred to as the ‘two-sample two-stage least square’ (TSTLS) model.

The obvious caveat with this approach is that the variables commonly used to predict parental earnings (e.g. education, geographic location, etc..) are likely to enter the child’s equation independently of the first-stage model.5 If the first-stage variables have a separate positive impact on the child’s earnings an upward bias in the TSTLS estimate of \(\beta \) will result. Previous studies that have used this methodology acknowledge this possibility and tend to treat their estimates as upper bounds of the ‘true’ intergenerational elasticity. In their seminal paper,

4 Grawe (2004) also obtain IGE estimates for several countries, including a number of developing countries (Ecuador, Nepal, Pakistan, and Peru). In general, he finds higher intergenerational persistence in developing regions as compared to high-income countries. However, some of the sample sizes for developing countries are rather small.

5 The fact that the distribution of these variables might differ across the two samples is less of a concern. Inoue and Solon (2010) show that the TSTLS estimator implicitly corrects for differences in the distribution of fathers’ characteristics between the first- and second-stage samples.
Björklund and Jäntti (1997) take advantage of good quality U.S. data to compare their TSTLS estimate with the value found by averaging actual fathers’ earnings over five years. They conclude that single-equation estimates of the *IGE* obtained from longitudinal data are about 0.1 lower than those obtained from the TSTLS method. The authors suggest interpreting these two measures as lower and upper bound, respectively, of the true value of the intergenerational elasticity. In light of these considerations, the *IGE* estimated in this paper will be more comparable to the existing evidence from studies that have used the same estimation procedure, particularly from other high-inequality countries.

For countries (like South Africa) where longer panel information is not available, an alternative to predicting parental income would be to use observations on cohabitating parent-child pairs. Hertz (2001) uses contemporaneous earnings reports from co-residing fathers and sons in the KwaZulu-Natal province of South Africa. He estimates the earnings elasticity under a number of different specifications while also attempting to correct for measurement error. For the purposes of international comparison, Solon (2002) quotes an estimated elasticity of 0.44 for South Africa from Hertz’s empirical analysis. However, the analysis is based on a sample that is not nationally representative. Also, parental income and cohabitation rates are likely to be correlated, possibly resulting in an endogenously selected set of observations. Samples that are more homogenous relative to the population of interest may be problematic for analyses of intergenerational earnings mobility – see the discussion in Solon (1999) – as they can lead to attenuated estimates of persistence.

6 Single-equation estimates are typically downward-biased by measurement error in parent’s income, hence the lower-bound interpretation. Mazumder (2005) shows that even a five-year average of parental income can cause a significant downward bias in the estimated IGE. The TSTLS estimator avoids measurement error in short-run father’s income as the first-stage regression provides a prediction of ‘permanent’ income.
2.2 The index of inequality of opportunity (IOp)

While the intergenerational elasticity reveals the statistical association in economic status across representatives of two generations, empirical measures of inequality of opportunity quantify the extent to which total inequality can be explained by a set of ‘circumstances’. The distinction between individual efforts and pre-determined circumstances is the conceptual basis for the definition of inequality of opportunity. The idea is that inequality in a given outcome is less objectionable when it is a result of differences in actions for which individuals can be held responsible (i.e. efforts). It follows that the intergenerational elasticity cannot be used as a direct measure of inequality of opportunity.7

A recent literature addressing the measurement of inequality of opportunity has grown from early work by Roemer (1993, 1998) and van de Gaer (1993). This literature put forward a number of indices to measure the contribution to inequality of factors over which individuals have no control (e.g. gender, race, parental background). Checchi and Peragine (2010) show that when the population is divided into groups with identical circumstances, the between-group inequality will provide an ex-ante measure of inequality of opportunity.8 Following this approach, Ferreira and Gignoux (2011) develop both parametric and non-parametric techniques to estimate the share of total inequality (in household income or consumption) resulting from differences in observable circumstances. An intuitive explanation of the methodology is provided by the following empirical steps:

- definition of ‘types’: the sample is partitioned into N distinct cells, consisting of subgroups with identical observable circumstances;

7 Roemer (2004), Jencks and Tach (2006), and Corak (2013) note that an intergenerational correlation equal to zero does not imply equality of opportunity.
8 Ex-post inequality of opportunity looks at the distribution of outcomes among people who have exerted the same level of efforts. See Fleurbaey and Peragine (2013) for a formal comparison of the two measures.
- distribution smoothing \(\{\mu_i^n\} \): each individual in the sample is assigned the mean income (or consumption) of her/his cell;

- inequality index \(I() \): an inequality index with desirable properties is chosen.

A relative index of inequality of opportunity (\(IOp \)) is then obtained in the form of a ratio

\[
IOp = \frac{I(\mu_i^n)}{I(Y_i)}
\]

(4)

The numerator in Eq. 4 measures inequality in a counterfactual population where there is no within-type variation (i.e. where inequality only arises from differences in observable circumstances), while the denominator denotes overall inequality in the outcome of interest. The ratio is therefore intended to measure the share of total inequality due to unequal opportunities.

The parametric approach follows similar steps as those just described with the only difference that the average outcome for each type is obtained using the predicted values from a log-linearized OLS model:

\[
Y_i = \alpha + C_i \varphi + \eta_i
\]

(5)

where the parameter \(\varphi \) captures both the direct effect of circumstances \(C \) on the individual’s outcome and their indirect effect through the choice of individual efforts (Ferreira and Gignoux, 2011).

The empirical estimation of the \(IOp \) index requires an observable set of circumstances that are thought to be beyond the individual’s control. Once the vector \(C \) is identified, the sample can be partitioned and the different ‘types’ defined. Since only a subset of all pre-determined circumstances that affect economic success can be observed empirically, estimates of \(IOp \) are generally interpreted as lower bounds of the true extent of ex-ante inequality of opportunity. This is because residual within-type inequality will partially reflect variation in unobserved circumstances.
2.3 The relationship between IGE and IOp

Brunori et al. (2013) provide a review of ex-ante measures of inequality of opportunity for 41 countries. Among other results, they show evidence of a positive correlation between the index of inequality of opportunity (IOp) and the intergenerational elasticity (IGE) across countries. In fact, the IOp and the IGE can be shown to have a simple statistical link. To see this, consider the parametric IOp when the variance is used as the inequality measure I():

\[I\hat{O}p = \frac{var(c_i^t \hat{\phi})}{var(y_i)} \]

(6)

which is just the \(R^2 \) from the OLS regression of Eq. 5. If we were to use parental earnings as the only circumstance variable, Eq. 5 would reduce to Eq. 1 and the \(R^2 \) from this regression would estimate the relative index of inequality of opportunity, which can be expressed as

\[I\hat{O}p = \hat{\beta}^2 \frac{var(y_p^t)}{var(y_i^t)} . \]

(7)

In this particular case, the IOp is related to the IGE (as estimated by \(\hat{\beta} \)) and to changes in inequality across generations (as denoted by the ratio of variances). As a special case, when inequality is of similar magnitude in the two generations then \(I\hat{O}p = \hat{\beta}^2 \).

The statistical link is somewhat different when the IGE is estimated by TSTSLS. If we rename \(X_i^p \) (the vector used to predict parental earnings in the first-stage regression) to \(C_i \), the intergenerational equation (Eq. 3) can be rewritten as

\[Y_i^c = a + \beta (C_i \hat{\lambda}) + e_i \]

(8)

and the resulting IOp index will be

\[\text{For South Africa, the authors quote the estimates reported in a previous version of the present paper (presented at the 2nd World Bank Conference on Equity, June 2012). The reported estimates are slightly different than the ones shown below, which make use of additional data from the third wave of NIDS and are based on a narrower income definition.} \]
\[I\hat{Op} = \beta^2 \frac{\text{Var}(c_i^\lambda)}{\text{Var}(y_C^\lambda)} \]

(9)

which is the \(R^2 \) from Eq. 8. This expression provides an insightful reformulation of the \(IOp \) index: for a given level of earnings inequality in the current generation, \(\text{Var}(y_C^\lambda) \), the extent of inequality of opportunity will depend on the level of between-type inequality in the previous generation, \(\text{Var}(c_i^\lambda) \), and on the degree of intergenerational earnings transmission, \(\beta \). The larger the difference in parental earnings across ‘types’ defined on observable circumstances, and the larger the earnings transmission across generations, the higher the inequality of opportunity.

3. Data and Sample Selection

The empirical analysis is based on the National Income Dynamics Study (NIDS), the first national longitudinal study in South Africa. Wave 1 of NIDS was collected in 2008 and consisted of a nationally representative sample of approximately 7,300 households. Waves 2 and 3 were conducted in 2010 and 2012, respectively, attempting to re-interview the same households that were visited in 2008. Those that had moved from their original households were tracked if their movements were within the borders of the country. NIDS used a combination of household and individual level questionnaires to obtain information on a wide selection of human capital variables, labour force experiences and demographic characteristics (see De Villiers et al., 2013; for details). The present study mainly uses information from the adult questionnaire, which includes the wages and other incomes of the adults in the household, as well as their education level and employment status. All adults were asked to complete a section on parental background. Key socio-economic information on non-resident and deceased parents is available from this retrospective section, in addition to information on co-residing parents available from other parts of the questionnaire. In the empirical analysis that follows, observations from the all
three waves of NIDS currently available (2008, 2010 and 2012) are pooled. A respondent who has valid information in more than one wave is counted as a single observation and the average value of pertinent time-variant variables is computed.

As explained in Section 2.1, estimating the intergenerational elasticity in South Africa requires auxiliary information on earnings and socio-demographic characteristics for a sample of ‘pseudo’ parents. That is, an earlier sample representative of the national population is needed to estimate the first-stage regression model. The Project for Statistics on Living Standards and Development (PSLSD) that was conducted in 1993 can serve this purpose. The PSLSD was the first nationally representative household survey conducted in South Africa. The dataset contains a variety of socio-demographic variables as well as detailed information on income sources. Under the apartheid regime, a large proportion of the population was excluded from official statistics. It was not until the PSLSD that credible data on the entire population was collected.

3.1 Analytical Sample

The empirical analysis focuses on males only. This is in line with a number of previous studies of intergenerational earnings mobility (especially in the developing world) that prefer to abstract from gender differences in labour force participation. The sample is restricted to men between 20 and 44 years of age, which yields a good sample size while keeping a reasonable overlap between the birth cohort of actual fathers and that of the adult males used in the first-stage regression.

10 The PSLSD has a similar design to the Living Standards Measurement Surveys (LSMS) conducted by the World Bank. Being the first nationally representative dataset for South Africa, it has been extensively used in the past 20 years (see, amongst others, Case and Deaton, 1998; Duflo 2003; Bertrand et al., 2003). For more information, see PSLSD (1994).

11 The mean age of actual fathers in 1993 was 46.5 compared to 44.9 of pseudo-fathers.
The income variable used in this paper is the monthly aggregated gross employment earnings. It includes wages, salary bonuses, shares of profit, income from agricultural activities, casual and self-employment income. Individuals who report zero earnings in all survey waves are excluded from the main analytical sample. This is an important restriction in a country like South Africa, where a large proportion of the population is chronically unemployed. While other measures of socioeconomic status (e.g. educational attainments or household expenditures) would result in a higher coverage of the population, the focus of the present paper is on the inherited determinants of earnings. Different metrics of social status result in conceptually and empirically distinct indices of mobility and inequality. The focus on earnings allows a direct comparison of the paper’s results to the large international evidence on earnings inequality and mobility. Furthermore, earnings differentials have been shown to be a key feature of South Africa’s high socio-economic inequality (Leibbrandt et al., 2010).

The estimation procedure also requires non-missing information on fathers’ socioeconomic status. About 24% of men with positive earnings do not report their father’s education. This may be partially related to high rates of father absence in South Africa (Posel and Devey, 2006), which might particularly affect low-income respondents. To check the sensitivity of the results to this sample restriction, Section 4.1 replicates the main estimation using recall information on mothers as well as fathers.

Table 1 reports some descriptive statistics for the analytical sample, which consists of 2,590 observations. As a result of the age restriction, the sample is relatively young, with a mean age at just above 32. This implies that sons’ earnings are observed at the lower end of the range

12 This definition is narrower than total market income, which is defined as before-tax income from all market sources (including rents and interests from investments). Previous studies have found evidence of higher intergenerational persistence and more inequality of opportunity for broader income concepts (Corak and Heisz, 1999; Mazumder, 2005; Brunori et al., 2013).
that minimizes lifecycle bias as identified by Haider and Solon (2006). These authors show that younger samples of sons lead to an attenuation bias in estimates of the intergenerational earnings elasticity. With respect to the four race categories typically utilized in South Africa, the selected sample slightly over-represents Whites and under-represent Africans and Coloureds. Table 1 shows that the weighted proportion of Whites in our sample is 10.4% as opposed to about 8.4% in the master sample of males of the same age group (not shown for brevity). Africans and Coloureds comprise, respectively, about 78.6% and 8.1% of the sample as compared to 80.4% and 8.9% in the master data.\(^\text{13}\)

<table>
<thead>
<tr>
<th>Table 1.</th>
<th>Descriptive statistics: males age 20-44 with positive earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age</td>
<td>32.23</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>African</td>
<td>78.6</td>
</tr>
<tr>
<td>Coloured</td>
<td>8.1</td>
</tr>
<tr>
<td>Indian</td>
<td>2.9</td>
</tr>
<tr>
<td>White</td>
<td>10.4</td>
</tr>
<tr>
<td>Own education</td>
<td></td>
</tr>
<tr>
<td>No schooling</td>
<td>3.3</td>
</tr>
<tr>
<td>Some primary</td>
<td>11.9</td>
</tr>
<tr>
<td>Lower secondary</td>
<td>12.3</td>
</tr>
<tr>
<td>Upper secondary</td>
<td>25.3</td>
</tr>
<tr>
<td>Matric</td>
<td>27.3</td>
</tr>
<tr>
<td>Post-secondary</td>
<td>19.9</td>
</tr>
<tr>
<td>Father’s education</td>
<td></td>
</tr>
<tr>
<td>No schooling</td>
<td>36.0</td>
</tr>
<tr>
<td>Some primary</td>
<td>21.7</td>
</tr>
<tr>
<td>Lower secondary</td>
<td>14.1</td>
</tr>
<tr>
<td>Upper secondary</td>
<td>10.2</td>
</tr>
<tr>
<td>Matric</td>
<td>11.5</td>
</tr>
<tr>
<td>Post-secondary</td>
<td>6.5</td>
</tr>
<tr>
<td>Median earnings (ZAR)</td>
<td>3.099</td>
</tr>
<tr>
<td>N</td>
<td>2.590</td>
</tr>
</tbody>
</table>

Notes: Author’s tabulations from NIDS (2008-2012) using survey weights.

Education is measured in six categories: (i) no schooling, (ii) some primary, (iii) lower secondary, (iv) upper secondary, (v) high school degree (matric), and (vi) postsecondary education. The percentage of sons in our sample without schooling is low (about 3%) but most of

\(^\text{13}\) These differences are probably the result of our focus on individuals with positive earnings—given employment differentials by race, Statistics South Africa (2012).
them do not complete secondary school (*matric*). On the other hand, the majority of fathers have little or no schooling (21.7% have some primary education while 36% have no education). The significantly higher education levels of sons compared to their fathers are consistent with the documented increase in educational attainments after the end of Apartheid (Leibbrandt et al., 2010). Finally, Table 1 shows that median earnings in our sample are estimated at about 3,100 South African Rands (deflated to the year 2012).

4. Empirical results

4.1. Intergenerational earnings regression

Table 2 shows the estimates of the intergenerational earnings elasticity in South Africa. The values shown are based on the estimation procedure outlined in section 2.1 (TSTSLS) under four different specifications. First-stage regression coefficients of parents’ earnings are shown in Appendix Table A1. The first specification—model (1)—uses only father’s education as the predictor of his earnings. Model (2) adds father’s occupation in the first-stage regression. Unfortunately, the detail of occupational information in the PSLSD does not match with the categories reported in the NIDS. In order to achieve comparability between the two surveys, occupational categories are aggregated into six larger groups: (i) elementary occupations; (ii) clerks/service workers, (iii) craft/trade workers; (iv) agriculture/fishery workers; (v) operators/semi-skilled workers; and (vi) professional/technical occupations/managers. While these occupational groups partially reflect skill differentials in the South African labour market,

14 Also, to the extent that fathers with many children are overrepresented in the sample of sons, some of this difference can be ascribed to differential childbearing by socioeconomic status. This is observed in most intergenerational studies.

15 The PSLSD sample of pseudo-fathers consists of males 35-59 years of age with positive earnings and non-missing information on the variables used to predict earnings. Age-adjusted earnings are used in both stages of the model to control for age-earnings profiles.
they are fairly broad and display significant within-group variation in education and earnings. For this reason, father’s occupation is best used in conjunction with other variables. Model (3) combines father’s education with the province where the son was residing in 1994. The latter is used as a proxy for paternal province of residence, which is not reported in the retrospective section of the questionnaire. Finally, model (4) uses all three first-stage variables to predict fathers’ earnings.\footnote{Different model specifications result in estimation samples of varying size. In particular, models requiring non-missing information on father’s occupation have significantly fewer observations. Despite this variation, however, the coefficients in Table 2 reveal a consistent picture of intergenerational earnings persistence in South Africa.}

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|}
\hline
 & (1) & (2) & (3) & (4) \\
\hline
\textit{First-stage variables} & Education & Education \& Occupation & Education \& Province & Education \& Occupation \& Province \\
\hline
\textit{\(\beta \)} & 0.605 (0.062) & 0.570 (0.091) & 0.624 (0.060) & 0.672 (0.079) \\
\hline
\textit{N} & 2,590 & 1,444 & 2,200 & 1,241 \\
\hline
\end{tabular}
\caption{Intergenerational earnings elasticity}
\end{table}

Notes: Author’s estimation from NIDS (2008-2012) and PSLSD (1993). Bootstrap standard errors in parentheses.

In light of the coefficients reported in Table 2, intergenerational earnings persistence in South Africa appears to be high and significant. In all cases, bootstrapped standard errors are reported in parentheses, to correct for the use of generated regressors.\footnote{First, a bootstrap first-stage sample of fathers is drawn, from which the parameters used to generate predicted earnings are estimated. Then a bootstrap sample of sons is drawn for the second-stage regression. After repeating this process 500 times, the bootstrap standard error is estimated by the standard deviation of the distribution of the bootstrap estimates.} The estimate of \(\beta \) ranges from 0.57 to 0.67 depending on the variables used to predict fathers’ earnings. Although there is some variation in the estimates across alternative specifications of the first-stage model, the results are consistently high and indicative that about three-fifths of the earnings advantage of
South African fathers is passed on to their sons. These values are similar in magnitude to those found for Brazil, China, and Chile using the same estimation technique (Ferreira and Veloso, 2006; Dunn, 2007; Gong et al., 2012; Nunez and Miranda, 2010). Overall, the estimated coefficients for South Africa corroborate the hypothesis of a negative relationship between cross-sectional inequality and intergenerational mobility.

As discussed in Section 2.1, the studies that have used the TSTLS estimator acknowledge the possibility that at least some of the first-stage predictors can have a direct effect on the sons’ earnings, with a resulting upward bias in the estimated elasticity. Although this possibility also applies to the estimates presented here, existing studies have shown that this bias need not be large (Bjorklund and Jantti, 1997; Corak an Heisz, 1999). Furthermore, the relatively young age of the sample of sons (and the use of earnings instead of total market income) would, if anything, result in more conservative estimates of the true intergenerational elasticity (Haider and Solon 2006; Piraino, 2007). Finally, Table A2 in the Appendix tests the sensitivity of the estimated coefficients to the inclusion of a significant number of observations with missing information on their fathers. Specifically, Table A2 replicates the estimation in Table 2 using maternal characteristics in the first-stage regression for those individuals who do not report father’s background. The results are remarkably consistent. Although these estimates still require non-missing information on at least one parent, the minor change in the coefficients from a larger sample is reassuring.

4.2. Inequality of opportunity index

The estimates of the index of inequality of opportunity (IOp) for South Africa are shown in Table 3. For international comparability, Table 3 provides IOp estimates using the mean
logarithmic deviation (Theil-L index) as the inequality measure in the ratio of Eq. 4. As explained above, the measurement of inequality of opportunity requires partitioning the sample into a discrete number of ‘types’ by observable circumstances. Table 3 presents the results of the estimation of Eq. 4 using both the parametric and non-parametric approach for five different partitions of the sample. The first four partitions are based on the same inherited circumstances that were used above to estimate the intergenerational elasticity. The fifth partition (bottom row) shows the IOp when race is included as a circumstance along with father’s education. Race is without doubt a pre-determined circumstance and it has an obvious relevance in the South African context.

Table 3 shows that the estimated IOp in South Africa ranges from 0.155 to 0.232. Combining more circumstances in the definition of ‘types’ leads to higher IOp values. Also, the inclusion of race seems to have a noticeable impact on the share of inequality of opportunity (row 5) even if added only to father’s education. The parametric estimates are generally lower than the non-parametric ones, although somewhat similar in magnitude. This is consistent with Ferreira and Gignoux (2011) who analyse Latin American data and show that the parametric method generally yields more conservative estimates of IOp. Overall, the values reported in Table 3 show that more than a fifth of total earnings inequality for South African males is explained by a parsimonious set of inherited circumstances. A comparison of these results to other countries for which estimates are available (see review in Brunori et al. 2013) reveals that South Africa is at the upper end of the international distribution of opportunity inequality. This is particularly true if one considers that the estimates reported in Table 3 are based on a very small

18 Ferreira and Gignoux (2011) and Checchi and Peragine (2010) provide a description of desirable properties that justify using the mean logarithmic deviation.

19 Race was not used to predict fathers’ earnings in the previous section because of the virtually perfect correlation between fathers and sons in this variable. As a consequence, it would have entered the sons’s equation directly and independently of the first-stage model.
number of observable circumstances and on a more homogenous sample (i.e. working males) than the overall population.

Table 3.

Index of Inequality of Opportunity.

<table>
<thead>
<tr>
<th>Circumstances</th>
<th>Non-parametric</th>
<th>Parametric</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Father’s education</td>
<td>0.176 (0.031)</td>
<td>0.155 (0.033)</td>
</tr>
<tr>
<td>2. Father’s education & occupation</td>
<td>0.212 (0.032)</td>
<td>0.164 (0.042)</td>
</tr>
<tr>
<td>3. Father’s education & province</td>
<td>0.230 (0.032)</td>
<td>0.187 (0.034)</td>
</tr>
<tr>
<td>4. Father’s education & occupation & province</td>
<td>—</td>
<td>0.224 (0.044)</td>
</tr>
<tr>
<td>5. Father’s education & own race</td>
<td>0.232 (0.031)</td>
<td>0.230 (0.051)</td>
</tr>
</tbody>
</table>

Notes: Author’s estimation from NIDS (2008-2012). Bootstrap standard errors in parentheses.

In the non-parametric analysis, which relies on mean outcomes for each type, it is important to avoid the occurrence of types consisting of very few observations. Appendix Table A3 reports the maximum number of types, the mean cell size, and the proportion of types with fewer than five observations for each partition of the sample. For the specification that combines three circumstance variables (father’s education, occupation and province), the relatively small sample size leads to a high incidence of cells with fewer than five observations. For this reason, the non-parametric estimate for the partition in row 4 of Table 3 is not reported. The other partitions have a significantly lower proportion of small cells and a high average number of observations per type (Table A3). Moreover, the estimated values in Table 3 (both parametric and non-parametric) are not sensitive to the exclusion of types with less than five observations.

20 The results from this robustness check are not shown for brevity. The only notable difference is an increase in the parametric estimate of specification 4 (Father’s education & occupation & province) to a value of 0.25.
4.3. Intergenerational mobility and inequality of opportunity

For a given sample partition and distribution of the outcome, different inequality measures \(I() \) in Eq. 4 will result in different estimates of \(IOp \) (Ferreira and Gignoux, 2011; Ferreira et al., 2011). The values shown above are based on the mean log deviation and are most useful for international comparisons. However, Section 2.3 showed that the \(IOp \) index based on the simple variance provides a straightforward statistical link between intergenerational mobility and inequality of opportunity (Eq. 7 and Eq. 9).\(^{21}\)

Table 4 shows estimates of Eq. 9 for the same sets of circumstances used above to predict parental earnings. First, we note that the \(IOp \) values based on the variance are lower than the corresponding parametric estimates in Table 3. In part, this may be due to the mapping of \(Var(C_i^p) \) into the between-type variance in parental earnings only — \(Var(C_i^p) = Var(\bar{Y}) \).

Also, different inequality measures are more (or less) sensitive to different segments of the distribution and this can contribute to the observed differences. What is more relevant for our purposes, however, is that the estimates in Table 4 can be linked to the intergenerational earnings coefficients in Table 2. In particular, the square of the earnings elasticity, \(\beta^2 \), reveals the extent to which inequality of opportunity is related to the intergenerational transmission of earnings. As shown by Eq. 9, for a given level of between-type inequality in parental earnings, \(Var(C_i^p) \), a higher \(\beta \) implies more inequality of opportunity among sons. That is, the intergenerational elasticity provides an indication of the extent of ‘inheritance’ of between-type inequality from one generation to the next. The values reported in Table 4 show that in South Africa inequality of

\(^{21}\) The variance also preserves a number of the desirable properties of the mean log deviation (Ferreira et al., 2011). Scale dependence is not a concern in the present application given that the index is defined as a ratio of inequality measures.
opportunity in earnings can to a good extent be explained by a high intergenerational earnings transmission.22

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|c|}
\hline
\textit{Circumstances} & IOp & β^2 & $\frac{Var(C_{i}^{\lambda})}{Var(Y_{i})}$ \\
\hline
1. Father’s education & 0.108 & 0.366 & 0.296 \\
2. Father’s education & 0.094 & 0.325 & 0.288 \\
& occupation & & \\
3. Father’s education & 0.127 & 0.390 & 0.326 \\
& Province & & \\
4. Father’s education & 0.137 & 0.452 & 0.303 \\
& Occupation & & \\
& Province & & \\
\hline
\end{tabular}
\caption{Inequality of opportunity index and intergenerational elasticity.}
\end{table}

\textit{Notes:} Author’s estimation from NIDS (2008-2012).

\section*{5. Conclusions}
A large international literature on the transmission of economic advantage across generations has developed over the past two decades. Parent-offspring correlations in economic status quantify the persistence of inequality from one generation to the next, and are sometimes interpreted as measures of societies’ failure to provide equality of opportunities. A related but distinct literature exists where the definition and direct measurement of inequality of opportunity is the main focus. This paper combines elements from both these literatures and offers novel empirical evidence based on South African data.

Accumulating international evidence on intergenerational mobility and inequality of opportunity is important for a better understanding of the mechanisms underlying long-term

22 Keeping $Var(C_{i}^{\lambda})$ constant, a 1\% decrease in β would result approximately in a 2\% reduction of the IOp index. For example, a decrease in the β of specification 4 from 0.672 to 0.572 (a 15\% change) would decrease the IOp index from 0.137 to 0.099 (a 28\% decrease). Note however, that this type of assessment should only be seen as a descriptive simulation, not as an analysis of causal channels.
persistence of inequality. Cross-national comparisons can point to a variety of institutional factors that are related to the reproduction of inequality across generations. From this perspective, South Africa certainly represents an interesting case to add to the international evidence. It is a country characterized by high and persistent levels of cross-sectional inequality (Leibbrandt et al., 2010) and it has a peculiar (and tragic) history of systematic racial discrimination against the majority of its population.

The paper’s results indicate that inherited circumstances explain a significant fraction of South Africa’s earnings inequality. The inequality of opportunity index is high in view of the limited set of circumstances included in the analysis. The paper also shows that this finding can be partially explained by high levels of intergenerational transmission of earnings. Taking into account the possible biases arising from the data and the procedure adopted, South Africa appears to have similar low levels of intergenerational mobility as other high-inequality emerging economies (e.g. Brazil, Chile, and China). The results offered here can be replicated in other countries where similar datasets are available. This can contribute to the debates around self-determination and the appropriate role of government in leveling the economic playing field, especially for the less studied developing world.
REFERENCES

APPENDIX

Table A1.
First-stage regressions on PSLSD data from 1993: males 30-59 years old.

<table>
<thead>
<tr>
<th>Education</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>some primary</td>
<td>.351</td>
<td>.245</td>
<td>.314</td>
<td>.242</td>
</tr>
<tr>
<td>(0.099)</td>
<td>(0.090)</td>
<td>(0.098)</td>
<td>(0.088)</td>
<td></td>
</tr>
<tr>
<td>lower secondary</td>
<td>.783</td>
<td>.579</td>
<td>.671</td>
<td>.529</td>
</tr>
<tr>
<td>(0.115)</td>
<td>(0.108)</td>
<td>(0.118)</td>
<td>(0.110)</td>
<td></td>
</tr>
<tr>
<td>upper secondary incomplete</td>
<td>1.30</td>
<td>.888</td>
<td>1.19</td>
<td>.863</td>
</tr>
<tr>
<td>(1.05)</td>
<td>(1.10)</td>
<td>(1.08)</td>
<td>(1.09)</td>
<td></td>
</tr>
<tr>
<td>matric</td>
<td>1.97</td>
<td>1.39</td>
<td>1.87</td>
<td>1.37</td>
</tr>
<tr>
<td>(1.17)</td>
<td>(1.25)</td>
<td>(1.21)</td>
<td>(1.26)</td>
<td></td>
</tr>
<tr>
<td>postsecondary</td>
<td>2.27</td>
<td>1.36</td>
<td>2.11</td>
<td>1.31</td>
</tr>
<tr>
<td>(1.17)</td>
<td>(1.54)</td>
<td>(1.20)</td>
<td>(1.54)</td>
<td></td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>professional/manager</td>
<td>1.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1.59)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>operator/semi-skilled</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1.26)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>craft/trade</td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1.57)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clerk/sales</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1.24)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>elementary occupations</td>
<td>.685</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1.17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Province dummies</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>R²</td>
<td>.35</td>
<td>.44</td>
<td>.37</td>
<td>.46</td>
</tr>
<tr>
<td>N</td>
<td>1,355</td>
<td>1,292</td>
<td>1,355</td>
<td>1,292</td>
</tr>
</tbody>
</table>

Notes: Author’s estimations based on PSLSD. Reference categories are ‘no education’, and ‘agriculture/fishery’.

Table A2.
Intergenerational earnings elasticity using information on mothers

<table>
<thead>
<tr>
<th>First-stage variables</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td></td>
<td>Education & Occupation</td>
<td>Education & Province</td>
<td>Education & Occupation & Province</td>
</tr>
<tr>
<td>β</td>
<td>0.574</td>
<td>0.505</td>
<td>0.595</td>
<td>0.609</td>
</tr>
<tr>
<td>(0.054)</td>
<td>(0.070)</td>
<td>(0.050)</td>
<td>(0.059)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>3,121</td>
<td>1,891</td>
<td>2,651</td>
<td>1,614</td>
</tr>
</tbody>
</table>

Notes: Author’s estimation from NIDS (2008-2012) and PSLSD (1993). Bootstrap standard errors in parentheses.
Table A3.
Sample Partition

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>2,590</td>
<td>1,444</td>
<td>2,200</td>
<td>1,241</td>
<td>2,590</td>
</tr>
<tr>
<td>Maximum number of types</td>
<td>6</td>
<td>36</td>
<td>54</td>
<td>324</td>
<td>24</td>
</tr>
<tr>
<td>Number of types observed</td>
<td>6</td>
<td>36</td>
<td>54</td>
<td>259</td>
<td>24</td>
</tr>
<tr>
<td>Mean number of observations per type</td>
<td>680.9</td>
<td>81.1</td>
<td>79.8</td>
<td>9.4</td>
<td>501.2</td>
</tr>
<tr>
<td>Proportion of types with fewer than 5 obs.</td>
<td>0</td>
<td>0.08</td>
<td>0.02</td>
<td>0.66</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Notes: Authors calculations from NIDS (2008-2012).
The Southern Africa Labour and Development Research Unit (SALDRU) conducts research directed at improving the well-being of South Africa's poor. It was established in 1975. Over the next two decades the unit's research played a central role in documenting the human costs of apartheid. Key projects from this period included the Farm Labour Conference (1976), the Economics of Health Care Conference (1978), and the Second Carnegie Enquiry into Poverty and Development in South Africa (1983-86). At the urging of the African National Congress, from 1992-1994 SALDRU and the World Bank coordinated the Project for Statistics on Living Standards and Development (PSLSD). This project provide baseline data for the implementation of post-apartheid socio-economic policies through South Africa's first non-racial national sample survey.

In the post-apartheid period, SALDRU has continued to gather data and conduct research directed at informing and assessing anti-poverty policy. In line with its historical contribution, SALDRU's researchers continue to conduct research detailing changing patterns of well-being in South Africa and assessing the impact of government policy on the poor. Current research work falls into the following research themes: post-apartheid poverty; employment and migration dynamics; family support structures in an era of rapid social change; public works and public infrastructure programmes, financial strategies of the poor; common property resources and the poor. Key survey projects include the Langeberg Integrated Family Survey (1999), the Khayelitsha/Mitchell's Plain Survey (2000), the ongoing Cape Area Panel Study (2001-) and the Financial Diaries Project.

www.saldru.uct.ac.za
Level 3, School of Economics Building, Middle Campus, University of Cape Town
Private Bag, Rondebosch 7701, Cape Town, South Africa
Tel: +27 (0)21 650 5696
Fax: +27 (0) 21 650 5797
Web: www.saldru.uct.ac.za