Southern Africa Labour and Development Research Unit

gpsbound: Routine for importing and verifying
geographical information from a
user provided shapefile
by
Tim S.1.. Brophy, Reza Che Daniels

and

Stbongile Musundwa

Working Paper Series
Number 132

About the Author(s) and Acknowledgments

Tim Brophy is a Senior Data Analyst, NIDS, SALDRU, UCT, email: tslbrophy@gmail.com
Reza Che Daniels is a Senior Lecturer, School of Economics, UCT, email: reza.daniels@uct.ac.za
Sibongile Musundwa is a Research Assistant, NIDS, SALDRU, UCT, email: sibongile.musundwa@gmail.com

Recommended citation

Brophy, T.S., Daniels, R.C., Musundwa, S., (2014).gpsbound: Routine for importing and verifying
geographical information from a user provided shapefile. A Southern Africa Labour and Development
Research Unit Working Paper Number 132. Cape Town: SALDRU, University of Cape Town

ISBN: 978-1-920517-73-1
© Southern Africa Labour and Development Research Unit, UCT, 2014

Working Papers can be downloaded in Adobe Acrobat format from www.saldru.uct.ac.za.
Printed copies of Working Papers are available for R15.00 each plus vat and postage charges.

Orders may be directed to:
The Administrative Officer, SALDRU, University of Cape Town, Private Bag, Rondebosch, 7701,
Tel: (021) 650 5696, Fax: (021) 650 5697, Email: brenda.adams@uct.ac.za

gpsbound: Routine for importing and
verifying geographical information from
a user provided shapefile”

Tim S.L. Brophy
University of Cape Town
Southern Africa Labour and Development Research Unit
Cape Town, South Africa
tslbrophy@gmail.com

Reza Che Daniels
University of Cape Town
School of Economics
Cape Town, South Africa
reza.danielsQuct.ac.za

Sibongile Musundwa
University of Cape Town
Southern Africa Labour and Development Research Unit
Cape Town, South Africa
sibongile.musundwa@gmail.com

07 July 2014

Abstract

Geographical coordinates such as Global Positioning System (GPS)
latitude and longitude estimates form the foundation of many spatial sta-
tistical methods. gpsbound allows users to (1) import geographical in-
formation from the attribute table of a polygon shapefile based on the
identified location of GPS coordinates in a Stata dataset, and (2) check
that the GPS coordinates lie within the bounds of a polygon demarcated
in the shapefile (e.g. enumerator areas, primary sampling units, suburb,
city, country). One of the contributions of gpsbound is to allow users
to work with spatial data in Stata without ever needing Geographical
Information System (GIS) software.

*This article has been accepted by the Stata Journal for publication.

1 The authors would like to thank participants at the 2013 Stata Conference New Orleans for
valuable feedback on an earlier version of this algorithm called gpsmap. This name was
subsequently changed to gpsbound due to the authors subsequently finding out that gpsmap
is a registered trademark of the Garmin Corporation.

Alison
Typewritten Text

Alison
Typewritten Text
*This article has been accepted by the Stata Journal for publication.
1 The authors would like to thank participants at the 2013 Stata Conference New Orleans for
valuable feedback on an earlier version of this algorithm called gpsmap. This name was
subsequently changed to gpsbound due to the authors subsequently finding out that gpsmap
is a registered trademark of the Garmin Corporation.

Alison
Typewritten Text

Alison
Typewritten Text

Alison
Typewritten Text

1 Introduction

Spatial data gives representation to features on earth. To accomplish this three
data types are used: polygons, points and lines. Polygons describe a geograph-
ical area, such as the geopolitical boundaries of a country; points describe fea-
tures represented by a single set of GPS coordinates, such as the location of
a dwelling unit; and lines describe features such as the path of a road. Spa-
tial data is most commonly stored in vector data format called a shapefile. A
shapefile is a relational database that consists of multiple tables connected by
a primary key (identifier). Each of the component tables have their own dis-
tinct data structure and file format. Traditionally, shapefiles are manipulated
using Geographical Information System (GIS) software. gpsbound allows users
to work with GPS coordinates and related information in Stata by manipulating
selective components of the shapefile relational database.

Frequently, Stata datasets contain GPS coordinates for objects of interest
(e.g. dwelling units, establishments), but do not have information about the
geographical areas (polygons) into which those GPS coordinates fall. gpsbound
is a routine in Stata that allows information from the attribute table of a user-
provided polygon shapefile to be imported as new variables into the open (mas-
ter) Stata dataset for each latitude and longitude pair. It also allows users to
check that the GPS coordinates lie within a polygon of interest (e.g. enumera-
tor areas, primary sampling units, suburb or county, city, country). If the GPS
coordinates lie outside the polygon of interest, the algorithm treats those coor-
dinates as errors of measurement and fails to import any data from the attribute
table for affected points. This allows users to identify incorrect coordinates im-
mediately which is useful for further diagnostic (and possibly data collection)
work.

Before the introduction of gpsbound the process to import spatial data into
Stata required a user to export their GPS coordinates of interest out of Stata
into a text file, then import the text file into GIS software and convert the data
into a point shapefile representing the GPS coordinates of interest. The user
would then have to open a polygon shapefile in the GIS software and perform
a spatial join between the point and the polygon shapefiles in order to link the
points of interest to the attribute data of the polygon shapefile. These attribute
table results would then need to be exported by the GIS software into a text
file and imported by Stata for analysis.

With the introduction of gpsbound this process is no longer required. The
user can simply specify the variables that contain decimal degree GPS coordi-
nates and the file location of a polygon shapefile in decimal degree units, to
which the coordinates need to be mapped. The algorithm will then perform
the spatial join and import the relevant attribute data. Consequently, Stata
users are no longer required to learn GIS software in order to be able to import
geographical data for analysis.

While it was previously possible to import entire shapefiles and attribute
tables into Stata using Kevin Crow’s shp2data command, gpsbound’s contribu-
tion is the selective importation of individually identified polygons and attribute
data based on the GPS coordinates from a Stata dataset. We envisage this func-

Brophy, Daniels € Musundwa 2

tionality to have benefits to two types of Stata users: (1) researchers interested
in importing the attribute data of polygons for given GPS coordinates; and
(2) survey methodologists interested in verifying the location of sampled units
(e.g. households, establishments) within selected enumerated areas or primary
sampling units, which can be done (if necessary) in field in real time.

2 Practical experience with using gpsbound in a
nationally representative longitudinal house-
hold survey

gpsbound was developed by the authors out of a practical problem that con-
fronted us in the National Income Dynamics Study (NIDS), a nationally repre-
sentative longitudinal household survey in South Africa. The first three waves
of the survey were implemented by the Southern Africa Labour and Develop-
ment Research Unit (SALDRU) at the University of Cape Town. The GPS
coordinates of the dwelling units of respondents were recorded at each wave.
The problem that confronted us was that (1) we needed a way to check that
the selected dwelling units were indeed the correct ones in terms of the initial
sample drawn in the first wave of the survey, and (2) in subsequent waves of
the survey, we needed a way to validate that fieldworkers were either (a) revis-
iting the correct dwelling units, or (b) correctly recording the location of new
dwelling units when continuing sample members of the survey had moved to
new locations in the country and therefore new dwelling units.

In practical terms, fieldwork for Wave 3 of the survey ended in 2012. There
were 9,273 dwelling units with observed GPS coordinates that were located
across South Africa. gpsbound was used to (1) verify that the GPS coordinates
were correctly recorded in field, and (2) after the completion of fieldwork, to
import the geographical information for new dwelling units where previously no
geographical information had been stored because they represented the dwelling
units of individuals that had moved between waves of the survey.

Running gpsbound for 9,273 dwelling units on a standard PC with latitude
and longitude coordinates resulted in the following computational times for
different polygon shapefiles:

1. For the enumerator area (EA) shapefile from the South African National
Census of 2011, which consisted of 103,576 EA polygons, the algorithm
took 302 seconds;

2. For the sub-place shapefile (equivalent in geographical area terms to a
suburb or small town), which consisted of 22,108 sub-place polygons, the
algorithm took 186 seconds;

3. For the main-place shapefile (equivalent in geographical area terms to
a big town or city), which consisted of 14,039 main-place polygons, the
algorithm took 196 seconds;

4. For the district council shapefile (equivalent in geographical area terms to
the size of a county), which consisted of 52 polygons, the algorithm took

Brophy, Daniels € Musundwa 3

76 seconds;

5. For the provinces shapefile, which consisted of 9 provinces, the algorithm
took 310 seconds.

This non-linear trend in computational performance was due to the size of
the shapefiles themselves, which differed according to the density of points per

polygon.

3 Polygon spatial data and its file structure

A polygon shapefile consists of geographically demarcated borders with an at-
tribute table. So, for example, a shapefile may consist of the provincial, city
or town borders while the names of each regional unit would be stored in an
attribute table. Therefore in order for a shapefile to be classified as such, there
needs to be at least three mandatory file formats. (ESRI, 2014):

1. The shapefile (*.shp), which contains the spatial data describing the loca-
tion of the features (e.g. GPS coordinates);

2. The dBase file (*.dbf), which contains a table of non-spatial attributes of
the features (e.g. names of cities);

3. The index file (*.shx), which allows GIS software to effectively navigate
the *.shp file.

It should be noted that the *.shp file extension is not the whole shapefile
but a single component of the relational database that constitutes a shapefile.
Consequently, it cannot be used independently of the other component files.
In order to understand how gpsbound functions one needs to understand the
different formats and types of data that are contained in the component files in
more detail. As gpsbound uses polygon shapefiles we will limit our discussion
to these.

3.1 The shapefile (*.shp)

Polygon shapefiles contain an index variable which is used as the primary key
(identifier), as well as the x and y coordinates for a series of GPS coordinates. It
also contains header information for each of the polygons. Polygon header data
contains the location of each polygon within the shapefile as well as the number
of GPS points that make up a polygon. Finally, it contains the bounding box
data, which is the maximum and minimum x and y coordinates.

3.2 The dBase file (*.dbf)

The dBase file is a tabular file format containing the attribute data that de-
scribe the features of the shapefile as well as the index variable that will act as
the primary key (identifier) to link the *.dbf and *.shp files in a one-to-many
relationship.

Brophy, Daniels € Musundwa 4

3.3 The index file (*.shx)

The index file is, in non-technical terms, an indexing file that tells GIS software
how to efficiently read the *.shp file. It does this by storing the position of the
starting byte of each shapefile element, thus allowing the GIS software to quickly
navigate to specific elements within a shapefile without having to process the
whole shapefile.

4 The gpsbound command

4.1 Description

gpsbound maps decimal degree coordinate points to a decimal degree polygon
shapefile. For each set of latitude and longitude coordinates, it returns the
attributes of the polygon within which that point lies. An optional variable
indicating whether the GPS coordinates were mapped successfully is also re-
turned.

It is important to note that gpsbound works only with decimal degree lati-
tude and longitude coordinates and polygon shapefiles. If the GPS coordinates
are in any other format (e.g. degrees-minutes-seconds), they have to be con-
verted to decimal degrees first before gpsbound can be used.

4.2 Syntax
The syntax for gpsbound is:

gpsbound using shapefilename [if | , latitude(varname) longitude(varname) |
valid(newvarname) prefix(string) keepusing(uvarlist)]

gpsbound requires two inputs: the polygon shapefile and the variable names
which contain the latitude and longitude coordinates. The full path and name
of the shapefile must be included, including the file suffix (*.shp). An associated
dBase (*.dbf) file must also be stored in the same folder path as the shapefile
and have the same name as the shapefile, though the file suffix will differ.

4.3 Options

The following options are available for use:

valid(newvar) is an optional binary variable created to indicate whether the
latitude and longitude coordinates that identify a point (e.g. dwelling unit)
fall within the bounds of the correct polygon (e.g. enumerated area). A new
variable name is required by this option.

Brophy, Daniels € Musundwa 5

prefix(string) option requires a string input. This string input will be used as
a prefix and will be incorporated to the imported variable names that are
obtained from the attribute table of the shapefile.

keepusing(varlist) option requires a list of variable names to be identified from
the attribute table of the shapefile. These variables can be viewed by open-
ing the *.dbf file in a spreadsheet programme. Only the variables listed in
keepusing will then be imported from the shapefile. If this option is not
selected all variables from the shapefile attribute table will be imported.

4.4 Output

gpsbound returns output in two forms: the first is the imported variable(s)
from the shapefile attribute table, which are added to the open dataset; and the
second is an optional binary variable that indicates the success of the mapping
routine between the GPS point and the polygon shapefile. This latter output
is only created when the option valid is selected.

b Example

The illustration below is a map (and associated polygon shapefile) of the
9 provinces of the Republic of South Africa, the Kingdom of Lesotho and the
Kingdom of Swaziland (the Kingdoms are the non-shaded polygons within the
contiguous geopolitical boundary of South Africa). The map also identifies
six sets of decimal degree GPS coordinates for randomly selected points in and
around South Africa. Five of the randomly selected points fall within the bounds
of South Africa and the remaining point falls just outside of the borders of South
Africa, inside the neighbouring country Botswana.

There are two columns in the table indicating the results we expect to see
once we run gpsbound. The third column in the table represents the expected
outcome of the optional output valid which, as discussed above, is a binary
variable indicating whether the given GPS coordinates of interest fall within
any of the provincial polygons that make up South Africa’s nine provinces. The
fourth column then indicates the expected value of the Province’ attribute that
will be returned for each point by running gpsbound given the set of coordinates
and the South African province shapefile.

Brophy, Daniels € Musundwa 6

ttuge [ongruce | SEnc | [o0
-23.302522 30.499787 1 Limpopo
-25.243937 24.975272 0

-27.333873 27.507088 1 Free State
-29.354913 21.882635 1 Northern Cape
-32.194854 26.393136 1 Eastern Cape
-34.290047 19.816570 1 Western Cape

Figure 1: Example of gpsbound

. * CREATE THE EXAMPLE DATASET
. clear

. set obs 6
obs was 0, now 6

. gen Latitude = .
(6 missing values generated)

. replace Latitude = -23.302522 in 1
(1 real change made)
. replace Latitude = -25.243937 in 2
(1 real change made)
. replace Latitude = -27.333873 in 3
(1 real change made)
. replace Latitude = -29.354913 in 4
(1 real change made)
. replace Latitude = -32.194854 in 5
(1 real change made)
. replace Latitude = -34.290047 in 6

(1 real change made)

. gen Longitude = .
(6 missing values generated)

. replace Longitude = 30.499787 in 1
(1 real change made)
. replace Longitude = 24.975272 in 2
(1 real change made)
. replace Longitude = 27.507088 in 3
(1 real change made)
. replace Longitude = 21.882635 in 4
(1 real change made)
. replace Longitude = 26.393136 in 5

(1 real change made)
. replace Longitude = 19.81657 in 6
(1 real change made)

. * RUN GPSBOUND
. * Run gpsbound on the South African province shapefile available
. % at h‘ctp://www.demarcation.org.za/2

2No direct URL is available to the download page. On the home page click the down-
load menu, select Boundary Data the boundary data download page will then appear. Click-
ing the Province folder will download the Shapefile Zip.

Brophy, Daniels € Musundwa 7

. gpsbound using "C:\Users\User\Desktop\Province\Province_New_SANeighbours.shp",
latitude(Latitude longitude(Longitude) valid(valid) keepusing(PROVINCE)

Execution of the above yields the following table of results:

. list

Latitude Longitude valid PROVINCE
1. -23.30252 30.49979 1 Limpopo
2. -25.24394 24.97527 0
3. -27.33387 27.50709 1 Free State
4. -29.35491 21.88264 1 Northern Cape
5. -32.19485 26.39314 1 Eastern Cape
6. -34.29005 19.81657 1 Western Cape

As can be seen the actual results and the expected results are the same,
demonstrating that gpsbound functions as desired.

d

5 Methods and Formulas

In discussing gpsbound, it is important to have an understanding of the actions
that are taken by gpsbound to produce the final result of mapping, validating
and importing the attribute table of the user provided shapefile into Stata.

gpsbound was written to be used on decimal degree latitude and longitude
coordinates with the World Geodetic Systems 1984 datum (WGS 84). A geode-
tic datum translates GPS coordinates into their relative position on earth. The
need for geodetic datum arises because of the earth’s ellipsoid shape. WGS 84
is the geodetic datum used by modern day GPS units and satellite navigation
systems. It requires the latitude coordinate to fall between -90 and 90 degrees
inclusive and requires the longitude coordinates to fall between -180 and 180
degrees inclusive.(Spatial Reference (2007)) To this end the algorithm checks to
ensure that the coordinates being passed to gpsbound fall within this range. A
similar check is performed on the polygon shapefile.

5.1 gpsbound subroutines

Broadly speaking, the gpsbound routine can be broken down into six distinct
actions powered by six different subroutines. The first subroutine imports the
dBase (.dbf) data file. The dBase file contains the geographical attribute ta-
ble for each of the polygons that make up the user provided shapefile. The
second subroutine imports the shapefile headers. What the headers are and
what they contain will be explored later in the paper. This is followed by the
third subroutine, which identifies potential polygons into which each set of GPS
coordinates under investigation may fall. The fourth subroutine imports each
of the polygons that were identified as a potential polygon in subroutine three

Brophy, Daniels € Musundwa 8

(Crow (2006)). This is then followed by a fifth subroutine which runs a point-
in-polygon algorithm to associate each point with its corresponding polygon.

The fifth subroutine which is the point-in-polygon algorithm returns two key
sets of results to Stata. The first is a binary variable indicating if the given GPS
point falls within any of the potential polygons. If so, a second data record is
returned, which contains the unique identifier for each polygon. The sixth and
last subroutine merges the attribute table imported by the first subroutine into
the dataset. This is done based on the polygon identifier returned from the
point-in-polygon algorithm.

5.2 Importing the dBase (.dbf) attribute table

As outlined, the first subroutine performed by gpsbound involves importing the
dBase file. The dBase file in its own rights is a fully fledged file format (dBASE
(2014)). The simplicity of dBase’s data structure means that it has been adopted
by many other applications to assist in managing and storing data. In the
context of shapefiles, the dBase files are used to store the feature attributes for
each of the polygons that are contained within a shapefile. There is only one
requirement for the use of a dBase file as data format for shapefile attributes,
and that is that a unique identifier field is included. The values in the identifier
field in the dBase file must correspond to the values in the identifier field in the
shapefile. Other than that, all the fields contained in the attribute table are
defined by the author of the shapefile, which allows the author to attribute any
characteristics they deem necessary to a particular shapefile. These attributes
can be global attributes applicable to each shape in a shapefile or they can be
unique for each shape in a shapefile. This is the real power of shapefiles and their
attributes tables. Thus one of the goals of gpsbound is to access this attribute
information and link it to given GPS coordinates collected in field or through
other operations. The linking of the shapefile attributes allows researchers to
access geographical information for analysis within Stata. As there is no limit
to the information attributable to polygons contained within a shapefile the
information that can be derived and analysed from the use of shapefiles and
GPS coordinates through gpsbound is only limited by the availability of GIS
data.

5.3 Importing the shapefile headers

The second subroutine imports the headers of the polygons from the shapefile.
A shapefile can be broken up into two distinct categories of data, namely the
headers and the coordinate data that describes each polygon’s shape. The
header data occurs for each polygon contained in the shapefile. Thus if a user
provided shapefile contains one hundred individual polygons then the shapefile
will contain 100 headers and 100 x n rows of coordinates, where n is the number
of coordinate points that make up a polygon’s shape. The headers contain
basic information pertaining to each of the polygons such as its primary key or
identification number, the GPS coordinates of its bounding box as well as the
position of its starting and ending bits in the shapefile (Environmental Systems

Brophy, Daniels € Musundwa 9

Research Institute (ESRI) (1998)). Thus the second major action of gpsbound
is to read through the shapefile and retrieve each of the polygon headers. The
headers are then stored in a matrix that we call the headers matrix. This
matrix is held in Mata and is crucial to the efficiency of both the computational
time taken when running gpsbound and the amount of memory needed to run
gpsbound. Memory efficiency is of particular concern when using shapefiles
because they can contain hundreds of millions of coordinate points which if all
held in memory at the same time affects both the overall computing speed and
available memory for other applications as well as Stata itself.

5.4 Identifying possible polygons

It is at this point that we start to process each set of GPS coordinates passed
by the user to gpsbound via the command’s longitude and latitude parameters.
Each GPS coordinate is compared to the bounding boxes found in the headers
matrix. The bounding box of a polygon is defined by the minimum and maxi-
mum latitude and longitude of that polygon; in other words, it is a box that fits
exactly around the polygon. If the user-provided latitude and longitude falls
within the bounding box of a particular polygon, then that polygon is consid-
ered a possible polygon into which the coordinates might fall. This exercise will
result in a list of possible polygon matches for each of the coordinates provided.
This list of possible polygons is used to limit the number of iterations, so that
each point only has to be tested against a few polygons and not against all the
polygons in the polygon shapefile.

5.5 Importing possible polygons

Possible polygons that were identified for each GPS point by subroutine three
are imported into Mata through the use of a shapefile polygon reader. The
reader imports a specifically identified polygon.

5.6 The point-in-polygon algorithm

Each polygon is then subjected to the point-in-polygon algorithm until the
GPS point is definitively placed inside one of the polygons. If however the GPS
point cannot be definitively placed inside any of the polygons a binary variable
containing a zero value is generated indicating that the point was not matched
to the shapefile at all.

The point-in-polygon algorithm makes use of a ray casting approach and
the even-odd rule. The even-odd rule states that a ray drawn from the point
of interest to infinity will intersect the edge of the polygon an odd number of
times if that point falls within the polygon (The World Wide Web Consortium
(W3C) (2011)). However if the point of interest falls outside of the polygon

3Previous versions of gpsbound did not have this step but rather read all of the shapefile
data into Mata; this was found to be computationally inefficient and used an unnecessary
amount of memory.

Brophy, Daniels € Musundwa 10

then the ray will intersect the border of the polygon an even number of times.
This is best explained using illustrations.

Figure 2: Tllustrationl

In illustration 1 the polygon is represented by A with X being the point
of interest. Casting a horizontal ray to infinity, the ray intersects the edge of
polygon A at intersection 1.

As can be seen, the ray only intersects the edge of the polygon once at
intersection 1. Applying the even-odd rule here tells us that the point of interest
X falls within the polygon A as the numbers of intersections with the edge of
the polygon A was odd.

A
1w2
Figure 3: Mlustration2
In illustration 2 the point of interest X falls outside of the polygon A. As can

be seen from the illustration; a ray cast from the point of interest X intersects
the polygon A twice, namely at 1 and 2.

Applying the even-odd rule, point X would be determined to fall outside
of polygon A as the horizontal ray intersects the edges of polygon A an even
number of times.

Brophy, Daniels € Musundwa 11

Figure 4: Tlustration3

[lustration 3 demonstrates polygon A with a separate polygon B inside it.
Given point of interest X, if we draw a horizontal ray away from that point, the
ray will intersect the edge of polygon three times at 1, 2 and 3. Applying the
even-odd rule we can tell that point X lies inside of polygon A as there is an
odd number of intersections with the edges of polygon B.

In order to find the number of intersections of the horizontal ray with the
polygon edge, we break the polygon edge into segments, where each segment is
a straight line connecting one point on the edge to the next point. We need to
consider only those segments of the polygon edge which cross the latitude of the
point of interest. That is to say, we consider those segments where one endpoint
has a larger Y coordinate than the point of interest, and the other endpoint has
a smaller Y coordinate.

We can then divide these segments into three classes: class A consists of
those segments where both endpoints lie to the right of (i.e. have a larger X
coordinate than) the point of interest; class B consists of those where both
endpoints lie to the left of (i.e. have a smaller X coordinate than) the point of
interest; and class C consists of those where one endpoint lies to the left and
the other endpoint lies to the right of the point of interest.

Recall that we want to count the number of intersections of the polygon
edge with the horizontal ray that starts at the point of interest and projects
rightwards to infinity. Edge segments in class A definitely intersect this ray,
while edge segments in class B definitely do not intersect this ray. Edge segments
in class C may or may not intersect this ray, and require further testing. As we
are using Mata for the point-in-polygon algorithm it is more efficient to calculate
the intersects of the segments in both class A and C as a matrix operation as
opposed to subsampling them into two distinct groups first. In so doing we
calculate all the points where the line segments of both A and C cross the
latitude of the point of interest. If this crossing point is to the right of the point
of interest, then the segment does intersect the ray. To do this we determine
the straight line equation that describes the segment, and then substitute our
Y coordinate from our point of interest into the equation to determine the X
coordinate of the crossing point.

Once we have calculated all the points of intersection for both class A and
B we then count how many elements of our results matrix are greater than or

Brophy, Daniels € Musundwa 12

equal to the X coordinate of our point of interest.

As a final step our count is determined to be either even or odd and this
result is returned by the algorithm. Where the algorithm returns the result as
odd, the index of that shape file is returned to Stata. This is then used to merge
in the attribute table that was imported earlier.

5.7 Joining the attribute data to the GPS coordinates

Finally the two data results, namely the binary variable indicating if mapping to
the shapefile was possible and a second variable containing the shapefile polygon
identification number, are returned to Stata. It is at this point that the dBase
file that was imported into Stata by subroutine one is merged to the mapping
results on the shapefile polygon identification number. It needs to be noted that
in versions of Stata before Stata 13 the string variables from the dBase file are
limited to 244 characters in length as this is the Stata limit on the length of
string variables. From Stata 13 onwards this is no longer a limitation due to
the introduction of the strL data type by Stata. BOB

5.8 Saved Results

There are no saved results in gpsbound because if the GPS coordinate is val-
idated then a new variable(s) is imported into the Stata dataset in memory
directly from the attribute table of the shapefile.

6 Conclusion

Spatial data enables a wide range of statistical analyses to be conducted. The
ability to selectively import additional spatial information into datasets from
shapefiles, combined with the ability to check the accuracy of GPS coordinates,
is crucial for more advanced statistical methods to be utilised. gpsbound makes
an important contribution to the Stata user community in this respect. Not only
does it enable researchers to increase the scope of plausible analytical methods
to be applied to spatial datasets, but it also enables survey methodologists to
verify in-field operational concerns in real time, such as checking that the correct
EAs have been visited by fieldworkers and/or that all dwelling units sampled
lie within the correct EAs. It is important to note that for gpsbound to operate
correctly, GPS coordinates must be recorded as, or converted to, decimal degree
format, and that shapefiles must be polygon shape files rather than point or line
shapefiles. With these basic inputs, the full functionality of gpsbound can be
realised.

Brophy, Daniels € Musundwa 13

7 Acknowledgements

We are grateful to staff members at the National Income Dynamics Study at
the Southern Africa Labour and Development Research Unit for providing the
time and space to adequately test the algorithm. We are especially grateful
to Adrian Frith for his invaluable comments on earlier drafts of this paper.
Lastly, we would like to thank participants at the annual Stata conference in
New Orleans, 2013 for helpful comments on gpsbound.

8 gpsbound Ado and help file

Should you wish to obtain a copy of the Ado and the help file, please use ”findit
gpsbound” in Stata or alternately contact the authors.

References

Crow, K. (2006), ‘SHP2DTA: Stata module to converts shape boundary files to
Stata datasets’, Statistical Software Components, Boston College Department

of Economics.
URL: http://ideas.repec.org/c/boc/bocode/s456718.html

dBASE (2014), ‘Data file header structure for the dbase version 7 table file’.
[Accessed: 2014, April 07].
URL: http://www.dbase.com/Knowledgebase/INT/db7._file_fmt.htm

Environmental Systems Research Institute (ESRI) (1998), Esri shapefile techni-
cal description, Technical report, Environmental Systems Research Institute,
Redlands.

Spatial Reference (2007), ‘Epsg:4326 : Wgs 84’. [Accessed: 2014, April 07].
URL: http://spatialreference.org/ref/epsq/wgs-84/

The World Wide Web Consortium (W3C) (2011), ‘Painting: Filling, stroking
and marker symbols’. [Accessed: 2014, April 07].
URL: http://www.w3.org/TR/SVG /painting. html#FillProperties

Brophy, Daniels € Musundwa 14

southern africa labour and development research unit

The Southern Africa Labour and Development Research Unit (SALDRU) conducts research directed at
improving the well-being of South Africa’s poor. It was established in 1975. Over the next two decades the
unit's research played a central role in documenting the human costs of apartheid. Key projects from this
period included the Farm Labour Conference (1976), the Economics of Health Care Conference (1978), and
the Second Carnegie Enquiry into Poverty and Development in South Africa (1983-86). At the urging of the
African National Congress, from 1992-1994 SALDRU and the World Bank coordinated the Project for Statistics
on Living Standards and Development (PSLSD). This project provide baseline data for the implementation
of post-apartheid socio-economic policies through South Africa’s first non-racial national sample survey.

In the post-apartheid period, SALDRU has continued to gather data and conduct research directed at
informing and assessing anti-poverty policy. In line with its historical contribution, SALDRU’s researchers
continue to conduct research detailing changing patterns of well-being in South Africa and assessing the
impact of government policy on the poor. Current research work falls into the following research themes:
post-apartheid poverty; employment and migration dynamics; family support structures in an era of rapid
social change; public works and public infrastructure programmes, financial strategies of the poor; common
property resources and the poor. Key survey projects include the Langeberg Integrated Family Survey
(1999), the Khayelitsha/Mitchell’s Plain Survey (2000), the ongoing Cape Area Panel Study (2001-) and the
Financial Diaries Project.

=l

www.saldru.uct.ac.za

Level 3, School of Economics Building, Middle Campus, University of Cape Town
Private Bag, Rondebosch 7701, Cape Town, South Africa

Tel: +27 (0)21 650 5696

Fax: +27 (0) 21 650 5797

Web: www.saldru.uct.ac.za

